XII. Finchore notes on recmpitulatory allitudes in Lepidoptera. By'T. A. ('IIApidN, M.I).
[Read October 3rel, 1917.]
1 have made a few more observatoms on the methods Followed be some Lepidoptera in passing from the attitude of drying their wings after their expansion to their orthary attitude of rest. The subject is interesting from any point of view, and especially ats it points to each species that has a special resting attitude adoptimg during this period certain positions that are actually, or in some degree recall. the ordinary resting attitude that is not theirs but that of the group to which they belong, or that is most frecuent in Lepilloptera.

I have only had opportunity to observe three more species of butterflies. They agree with those reported on last year. in making certain opening and chosing wing movements, not after the wings are dry, but during the process of drying: so far as my few observations go mothing of this sort oceurs in the Heterocera.

In P. repue this was seen to suggest an effort, which the limparss of the undried wings prevented being successful, to spread the wings flatly, as in the resting attitude of so many Lepidoptera. The other species moticed had similar alternations of opening and closing the wings, but through a much smaller angle that would not suggest an effort to extend them flatly, but for the fact that they were obviously of the same character as in P. repere. Though this curious habit may have some other meaning. none has oceured to me but that mentioned in my previous paper.

With regard to the Heterocera observed, the Geometers follow broadly the same procedure as did those reported in the previous paper, and suggest that the habit ther exhibit will obtain in all similar Geometers, that is, smilar in having resting positions other than the typical deltoid one. My examples come from each of the three larest sub-families of our British (ieometers. so that the habit is in mo way of classificatory value. This conelusion is confirmed by finding that precisely the same reminiseence of the typieal resting position oceurs in the quite unrelated F. falcularia.
trans. ent. soc. Lond. 1917.-parts. il, hil, IV. (may '18)

The detailed notes taken minute by minute during the observations, as I gave them in my first notes on this subject, seem of little value, except as proof that the observations actually were made, so I do not append them, but rather describe the general succession of events in each species, instead of leaving them to be worried out of memoranda made hurriedly during the observations, and not perhaps easily understood, owing to their abbreviated nature, except by myself.

The speeies observed were -
P.brassicue. The wings expand to a position the same as the normal resting position, that in which most Lepidoptera dry their wings. Almost as soon as one can say expansion is completed, the wings are opened apart to a position in which the fore and hind wings being together, the mid-costae are 8 to 12 mm . apart, and the apices 3 to 8 mm ., so that the attitude corresponds to that which in P. ropue I have described as bell-shaped: but the separation is so slight in comparison that this attitude would not in brassicae suggest any resemblance to the outline of a bell. It is, however. essentially the same, in that the wings being timp the apices approach each other, more than the mid-costae, and are in fact 3 to 8 mm . apart instead of 12 to 20 , as they would be if the wings were stiff. They maintain this attitude for about thirty-five seconds and then close, so that the costae are in contact to within 4 mm . of the thorax. They remain so for about forty-five seconds and are again opened to the open position. This altemation is repeated about fourteen or fifteen times. The actual opening and closing takes about ten seconds. The period during which the wings are open is very similar to that during which they are closed, viz. about thirtyfive to forty-five seconds. These vary a little in the same specimen and between different specimens, but only by a few seconds. I onght to have said that when open there is the variation of 8 to 12 mm . at mid-costa in different specimens, not in the same specimen. and that 8 mm . at mid-costa corresponds to 3 at apices. 12 mm . to 8 at apices. At the fifth or sixth opening the hind-wing tends to open a little before the fore-wing, separating from them by a millimetre or two in the process. About the seventh or eighth opening, the wings are seen to be stiffer than at first, and the apices are as wide apart as the mid-costae. About the tenth the apices open wider then the mid-costae,
the wings being stiffer and holding themselves straighter. About this time the hind-wings tend to be a little separate from the fore-wings when open. Then the fore-wings upen but little and the hind-wings rather more. Gradually by about fourtecnth opening the hind-wings only open, or the fore-wings hardly perceptibly; gradually the separation of the hind-wings diminishes, and somewhere about the sixteenth to twentieth altemation one may say the process hats finished. When closed, the wings at first close very close up to the thorax. their limpness causing no resistance by the further portion of the wings to this approximation; as the wings get stiffer they do not close so far up, only sometimes for a third or half-way from the apex. Later. when the final resting attitude is assumed, they close further up, nearly as far as at the first closing. One or two specimens opened more than the usual or 12 mm . one as much as 20 mm . and might failly be described as in the bell attitude.

Throughout the process the butterfly at intervals, without reference to the wing being opened or closed, makes a shivering movement, at others rocks to and fro a little this more frequently on closing the wings, and more frequent in later stages and makes a few fluttering movements of the wings of an amplitude of about 0.5 mm . All this time the antennae are well separated, much as in the mature butterfly, but are directed slightly behind a line at right angles to the line of the body, which is reached by them about the time the wings finally close, but do not reach the final somewhat porrect position till an hour or more after; their advance to this position is gradual and imperceptible. The hind-wings have the costae nearly level with those of the fore-wings when mature during the opening and shutting movements they are usually a millimetre or two behind.

We have here, though less obvious, just as in P. rapue, an effort to assume the Lepidopterous resting attitude. i.e. with the wings flat, but as in P. repue it occurs not after the wings are dry but during their drying, being as it were pushed backwards in the ontogeny.

Pieris mupi. The process in mapi is ahmost intermediate between those of rapue and brussicac, the bell attitude results from the wings being depressed to an angle of about $45^{\circ}\left(90^{\circ}\right.$ between the opposite wings) instead of the 90° of rapue or the 15° or 20° of brassicue. The details differ a little, but hardly to a degree worth full description.

Chrysophamus dispar. var. mutilus emerges about 9.30 a.m. Wings expand very rapidly in from six to ten mimutes, they expand to butterfly resting attitude. i.e. wings closed dorsally. There then begins a succession of what must be called opening and shintting the wings, though the opening onlv amonnts to a separation of 2 or 3 mm . When closed, the wings (costae) are in contact for fourfifths of their lenglh, when open, though the wings are elsewhere separated, the apices may in some cases meet. They remain closed for about thirty seconds and open for forty-five seconds, but the time varies a little, for about sixteen times in twenty minutes and then for several times more, but so slightly as to be almost doubtful. settling down to the distal two-thirds of the wings touching at the end of half an hour. About the middle of the period the hind-wings open from the fore-wings, so that their tips are 6 or 7 mm . apart during several periods of being open. Yarious minor details as to movements of proboscis and positions of antennae are not perhaps worth reporting.

Smerinthus populi and ocellatus only afforded me three observations; they have a habit, very trying for this purpose of emerging hardly before and usually a good time after midnight. They expand the wings into the drying attitude, and then gradnally and imperceptibly open them, during about half an hour, to the ordinary resting attitude for the fore-wing; the hind-wing is then only partially advanced to show its costa, not more, in fact, than is compelled by its greater width; ther project about 7 mm ., and it is some time before they advance to show nearly double this width.

It camnot be said, so far as my meagre materials justify, that these species show any attempt to exhibit the normal Lepidopterous resting position.

Falcaria falculariu follows very closely the habits of the Geometers, Ephyras, Acidalias, ete. It emerges about 5 to $5.30 \mathrm{a} . \mathrm{m}$., rarely or never after 6.30 . It expands the wings under an hour. then throws them back into usual drying attitude with a little sudden jerk, remains so for perhaps forty minutes, then gradually lowers them, i.e. with no sudden jerk to flat attitude, with imner margins against body, i.e to normal Geometer resting attitude. Some specimens advance the fore-wings gradually and very slowly to the resting attitude of the species, i. e exposing much of the hind-wings; others remain in the triangular position
much lomger. pmokally fill period of evening tight in most cases.

Phentern bucephater. The resting attitude in most Nonendonts is the nomal one with the wines in pemthome pesition. In bucephan this is, une may say exatenated. so that the wings curl romed the beely in such a way that the enstace of the fore-wines approach each other beneath the insect and the apiees are never more than a few millimetres apart. and may tomeh if the object on which the moth rests permits or favours this.

The wings expand to a position in which their surfaces form a flat arch wer the dorsum, then they are thenw back in the nenal was inte butterthe attitnde. Ther reman so. droing. for half an homr, and are then dethexed to abomt the arehed positien to which the expanded the surfaces of the fore-wings being at an angle of abomt 110 . the immer margins in contact and the apiees es moma apre In abont an hent the angle of the wing surfaces to eath other is ?n. and the apiees are only lif mm , apart. The wing have alreadr a little comature. In amother home the tips are only ? mm, apart, and in stecessive homs they are no en? an fi mm.. f mm, and 3 mm . apart. Thee hevis more thes are observed to be tonching: this movement. frem the rather flat penthonse position, to that of the wings hemer so curled round the bods. is gradual. with matnal mowement observed at any time. and would appear to depend on the gradual acquirement by certain wing museles of the necessary tenieity.
H. whuptaria emerges in the afternom about on 5 p.m. A specimen kept the wings in ordinare Geometer position (triangular) from j.3. to $\overline{3} .30$. themgh disturbed onee about the middle of this peried. Ter mimutes later ($\overline{\mathrm{L}} \mathrm{t1}$ p.m. m .) it had assmed the ordinary resting attitude of the species with the fore-wings advanced.
T. comsonerin emerese about 4 p.m. In home later the wings are expanded and the buttertly attitude taken. and in another half-hom the are deflexed to the ordinary triangular Geometer res ing position, which is mantained for at least two hours and probably as a mole till the time of tlight, but on earlier disturbance the nanal resting pesition with adranced fore-wings is aswmed on resting again. l dide not ascertain after how short a period in the triamoular persition this would ocemr.

In Tephron? ${ }^{\text {sis }}$ is isogrammath the wings were maintained
in the dreinw (butterfly) attitude only twelve minntes and were the phaced in the feomet rid (deltoid) posit ion. Being disturbed some five minntes later, s. that it ran two behes. it settled again in the same attitude. The two eostane form an ange of abget low : an hom later it was about lon. and in another hour the msual resting position was at tamed, with eostal angle of 1 ?日) to ? (0) , i. e. with the wings forward of having the eostare in line.
solemin illustrerin. This spectes ditiers a enoul deal from s. illmmarie in its methods of proceding from wing expansion to the nomal resting position. Thongh in a wam room, specimens would oceasiomally be more than half an hour after emeroence before ant sign of the wings papanding comld be deteeted. The wings them expanded rather rapidly, taking however, usmally about or a little over thirty-five mimes to expand. When expansion is completed the wings hang backwards, but only the tips of the forewings touch each other. mot indeed always domg so. Then gradually the wings approximate to the butterfly attitude. that is, closely peresed together dorsally. so that the costa are comedent for the dirstal halves.

The moth selects a rertical or if possible. a slightly werhanging position in wheh to expand so that now they hang downwards, more or less. whilst in this backward position. I special feature is that this dowal position is gradually attained by quite imperepetible movement, and this peculiarity continues throughont the whole evolution from the begiming of expansion to the attamment of the nomal resting position: there is no sudden mowement as is so common, either of throwing the wings back, or assmming the resting position. This closing backwards is attained in ten or fifteen mimeses after expansion is completed; the wings are kept so for abont twent minntes and then are gradually separated in a minute or two till the costa of fore-wings are separated to an angle of 10 or \bar{z}; the separating morement is contimed in the same gradual, hardly noticeable manner, till in abont two more minntes the angle is 60°, in two more 90°, and in two or there more finally 100 or 110 . Usmally the proces is rather slower, and varies a good deal in its rapidity at diflerent stages. In the position of the moth, gravity no dombt temels to make the wings hang directly backwads: nevertheless, the position of the wings at this stare is with the eostate of the anterior wings at an angle with each other of abont
120), and of the flat surfaces of the wings of about 1.10 ; the costace not heing so far adranced as to be in a plane transerse to the line of the insect body. but behind this in a plane that slopes backwards from it at a considerable angle. This position. which appears to mepresent the memory of the nomal (triangular) resting attitude of (ieometers, may last about thirty minutes. and in another thinty mintes the wings close again dorsally to a costal angle of about 45 . At this point the cosstae of the foreand hind-wings on cither side are nearly coincident.

In the same gradual imperceptible way in which the other movements nccur, the fore-wings advance from the hind-wings. Measured from costa to costa at the postdiseal line it takes about two hours for the fore-wings to be 3 mm . in advance of the hind-wings, the fore- and hind-wings being stili in the same plane. Then, still very giadually the fore-wings assume the curions bend in a line betow rein 2 that characterises the ordinary resting attitude of the species, the inner part of the wing being in the same phane with and close against the hindwing, the qreater (costal) portion being raised at a considerable angle. At the end of another home one may think this attitude is attained. at the end of two one has no doubt it is. All the progress and the movements involved are so gradual and imperceptible that it is dillicult to divide them into stages and say when each is complete.

Illustruriu emerges in the morning about 6.30 to 7.30 a.m.

Emomos hanaria. The wings are thrown back when expanded, and some ten minutes later and when apparently dry are opened gradually, so that in about six mimutes they neady approach a flat position, instead of 180^{-1} (flat), between the two fore-wings they are about 160° or 170°. In some ten minutes the angle diminishes to that of normal resting, perhajs 80 , but there is still no angulation of forewing, and the hind-wing is only 3 or 4 mm . behind fore-wing. The complete resting attitude with fore-wing advanced and with the longitudinal fold is not attained till an hour or two later. I see that in one specimen I moted the wings were opened till yuite flat; in another they did not get quite as far, but I did not note the angle. The costae of fore-wings nrade an angle of 90°, but the wing surfaces were much more.

Fidoniu piniarin emerges 6 to 8 a.m. The wings expand
to the dorsal (butterfly) position in about twenty minutes; in about ten minutes more they are gradually separated, so that in two or three minutes the wings are separated so that the apices are some 18 mm . apart, the angle between the wings being about 40 . They remain thus for about six or seven minntes, the wings appearing to be quite dry and stiff. They then gradually close, at the rate of about 1 mm . (for each wing) a minute, and in ten or twelve minutes the butterfly attitude (the normal resting attitude of piniariu) is reached, to appearance, but they are not tightly closed for tell or twenty more minutes. The whole process is. gone through very rapidly (compared with most other species). After the wings are dry they are separated, but not widely, so that the reminiscence of the flat deltoid attitude, though still present, is comparatively brief and slight. The process reminds one of that obtaining in the butterflies, but the important difference is that it takes place after, not during drying; also, of course, it is one, not a succession of movements.
S. illunariu and F. piniariu both have a normal resting attitude similar to that of the butterflies, with the wings raised over the back; but the reminiscence of the ordinary Gcometrid attitude which they display, in the interval between the completion of the drying of the wings and the assumption of their resting attitude, two attitudes that are identical and that one would expect to find continuous, is curiously different in the two species. In both species, however, the reminiscence is there.

In the Etudes de Lépidoptérologie Comparée, Fasc. V (ii), p. 115, Mr. H. Powell records how Syrichthus mohammed, Obthr., having expanded its wings in the closed ("butterfly") attitude, depresses them to the Geometrid or triangular position, and gives photographs on Pl. Hj, Fasc. VI and Pl. Hb, Fasc. V (II) and of S. proto on Pl. 27, Fasc. VII. He says this position is kept for only a short period. In complete repose the wings are closed in butterfly attitude ; when basking, the depressed wings have the costae at right angles to the body; when resting briefly the fore-wings are well raised. This merely summarises a valuable demonstration that the recapitulatory attitude is very manifest in Syrichthus. In this habit the "Skipper" appears to be nearer the Heterocera than to the butterflies.

